

SCIENTIFIC RESEARCH CENTER

International Journal of Research in Science and Engineering Vol. 4, No. 1, 2025, pp. 27-33.

ISSN 2348-3008

www.scientificrc.com

Evaluation of Efficiency and Managerial Challenges in Using Portable Heavy Balancer Devices for Optimizing the Handling and Assembly of Heavy Components

Hosseinali Tarighati¹, Hafez Tarighati^{2*}

1-Associate degree of Mechanical engineering 'General Mechanic, Machine Tool, Bahnar Faculty, Babol Noshirvani University of Technology, Babol, Iran, Email:htarighati@yahoo.com

2- Associate degree of Manufacturing engineering 'Sama Faculty, Islamic Azad University ,Qaemshahr branch, Qaemshahr, Iran, Email:arash_mow123@yahoo.com

Email: htarighati@yahoo.com

Abstract

The use of portable heavy balancer devices as a key tool in optimizing the handling and assembly of heavy components holds significant importance in advanced industries. This study aims to evaluate the efficiency, operational accuracy, and managerial challenges associated with the deployment of these systems in industrial environments. Data were collected through a combination of literature review, field experiments, and expert interviews. The analysis of results indicated that the use of balancers reduces rotor imbalances, improves assembly accuracy, and shortens operation cycle times. However, the increased weight of components led to longer balancing times and introduced managerial challenges in operation planning. The low error rate observed for light and medium-weight components confirms the effectiveness of the device's mechanical design and digital control, while the relatively higher errors for heavier components highlight the need for preventive maintenance and operator training. The findings suggest that integrating advanced balancing technology with proper operational management can enhance productivity, safety, and assembly precision in heavy industries, providing a practical model for optimizing industrial processes.

Keywords: Portable heavy balancer, heavy component assembly, rotor balancing, industrial optimization, operational efficiency, equipment management, digital control, industrial safety..

International Journal of Research in Science and Engineering Volume 4, Issue 1, pp. 27-33

Introduction

The use of portable heavy balancer devices to optimize the handling and assembly of heavy components, as one of the key tools in heavy industries, involves numerous challenges that require careful scientific and practical analysis. Previous studies have shown that proper balancing of rotors and rotating components not only prevents vibrations and equipment damage but also increases component lifespan and improves the performance of mechanical systems (Li et al., 2021; ISO 21940-11, 2016). However, implementing portable balancers in industrial environments faces operational limitations such as space constraints, weight, and portability, which can affect the operational efficiency of these devices. Moreover, neglecting dynamic design principles and rotor tolerance can lead to unstable performance and increased risk of system failure (Xu et al., 2022).

A fundamental challenge in using portable heavy balancers is ensuring coordination between device characteristics and the operational requirements for assembly and handling. Proper design of starter and generator systems, which function as part of dynamic balancing systems, plays a vital role in overall performance (Bu et al., 2020; Ye et al., 2021). Studies indicate that using induction motors and integrated starter-generator systems can improve operational efficiency, but challenges such as unwanted vibrations, unbalanced magnetic forces, and the need for specialized maintenance still remain (Zhang & Zhang, 2021; Michelotti & Silva, 2016). Therefore, detailed examination of the design and performance of these systems in real industrial conditions is essential to reduce risks and enhance productivity.

Maintenance and fault management in portable heavy balancing systems are also critically important. Analyzing and identifying errors caused by starter motors, vibrations, and component misalignment can prevent unexpected production line stoppages (Midya et al., 2023; Scheffer & Girdhar, 2004). Given the mechanical and electrical complexities of these devices, analytical and technical approaches to fault investigation and maintenance process design must be carefully considered to ensure both human safety and equipment durability (Sánchez Gutiérrez, 2014; Paramasivam et al., 2022).

Ultimately, the main research focus is finding optimal solutions for using portable heavy balancers in industrial environments while adhering to international standards and managing operational challenges. Analyzing and improving the performance of these devices requires simultaneous consideration of mechanical, electrical, and managerial aspects to enable safe and efficient handling and assembly of heavy components (Monroy et al., 2023; Li et al., 2021). This highlights that without an integrated and scientific approach, effective utilization of portable heavy balancers remains difficult and continues to pose risks to production line efficiency and safety.

Automatic Argon Welding Device

One of the engineering objectives is to perform complex tasks at lower cost through creativity and innovation, achieving solutions that allow practical implementation of ideas. Considering that arc welding with argon produces physical hazards, I designed an automatic argon pipe welding device. The device consists of the following components:

- 1. Argon welding inverter
- 2. A gearbox for the chuck shaft
- 3. An electric motor for chuck rotation
- 4. An inverter to control the motor speed of the chuck shaft
- 5. An argon cylinder
- 6. An electrical control panel
- 7. A sensor
- 8. A chuck
- 9. An argon torch
- 10. A supporting frame enclosed with a canvas cover
- 11. A fan to exhaust welding gases outside

- 12. A stand base
- 13. A micro switch

Operation Steps:

The pipe is connected to the chuck on one end, while the other end rests on the stand base. The torch is positioned on the seam of the two pipes, and the device is started. Once started, welding begins, completing one full rotation along the seam, after which the device automatically stops.

Lecture review

Rotor balancing, as a fundamental principle in mechanical engineering and heavy industries, plays a vital role in enhancing the performance of rotating systems while reducing vibrations and mechanical stresses. Research shows that improper rotor balancing increases vibrations, accelerates bearing wear, shortens equipment lifespan, and can even cause failure in drive systems (Diouf & Herbert, 2014; ISO 1940-1, 2003). Practically, rotor balancing is divided into two main categories: static and dynamic balancing, each with its specific characteristics and requirements. ISO 1940-1 (2003) comprehensively defines quality specifications for rotor balancing in rigid conditions and tolerance criteria, serving as a design and performance evaluation standard in many industries. The standard demonstrates that even small deviations in mass distribution can lead to significant changes in the system's dynamic response and increase the risk of uncontrolled vibrations.

Experimental and industrial studies have developed various methods for analyzing and correcting rotor imbalance. The Influence Coefficient Method, particularly when combined with vector analysis, has proven effective in controlling imbalance in flexible, supported rotor systems and mitigating its effects (Thanh et al., 2018). Modern approaches, such as trail-weight balancing and temporary system-response-based techniques, allow imbalance correction under transient conditions and significantly accelerate operations (Zhao et al., 2021). These advancements are especially important in heavy industries involving the assembly and handling of large, sensitive components, where even minor variations in mass distribution can pose mechanical damage risks and reduce assembly precision.

Research also indicates that dynamic analysis of rotors, considering nonlinear effects, friction-induced vibrations, and base looseness, is essential for designing effective balancing systems (Yang et al., 2019; Bin et al., 2018). These studies show that rotor responses to combined faults—such as imbalance, base looseness, and friction—are complex and nonlinear, requiring precise modeling to predict system behavior. The use of automated CNC machines in rotor assembly enhances accuracy and reduces human errors, enabling optimized mass distribution during assembly through digital control and sensor data analysis (Lawson et al., 2020).

Additionally, dynamic balancing techniques have been applied to starter motors and armatures in vehicles. Case studies indicate that balancing armatures in vehicle starter motors reduces vibration, minimizes undesired force transmission to the chassis and other components, and improves motor performance (Medellin & Mendoza, 2011; Tseng et al., 2007). Controlling imbalance propagation in the assembly of precision cylindrical components is also an effective strategy to reduce cumulative errors and enhance mechanical system accuracy (Sun et al., 2019). Overall, theoretical foundations suggest that rotor balancing is not only a mechanical engineering requirement but also a strategic approach to optimizing equipment performance, increasing safety, and reducing maintenance costs in heavy industries.

A key aspect of optimizing rotor performance is the use of full-machine balancing with multiple supports (N+1 supports). This approach, especially in turbomachinery and complex rotor systems, allows precise distribution of center-of-mass forces, reduces vibrations, and minimizes adverse effects on bearings and machine structures (Bin et al., 2018). Studies demonstrate that full-machine balancing enables integrated optimization of the entire system rather than localized imbalance corrections, leading to longer equipment lifespan and reduced need for repeated maintenance. For flexible rotors supported on non-rigid mounts, combining dynamic analysis with influence coefficients provides greater adaptability and higher precision (Thanh et al., 2018).

International Journal of Research in Science and Engineering Volume 4, Issue 1, pp. 27-33

Analyzing combined and nonlinear rotor faults, particularly in advanced industrial systems, is a crucial component of rotor balancing theory. Recent research indicates that friction, base looseness, and geometric asymmetry can produce complex, nonlinear system responses, making precise modeling and advanced simulation essential for effective imbalance correction (Yang et al., 2019). In heavy industries, especially during assembly and handling of large components, minor rotor faults can cause significant mechanical damage and reduce assembly accuracy.

Automated CNC machines for rotor assembly and balancing have revolutionized mechanical industries. Using sensors and digital control algorithms, imbalance can be detected and corrected during assembly, significantly improving balancing accuracy and reducing human errors (Lawson et al., 2020). This technology not only increases precision but also accelerates production processes and lowers maintenance costs. Consequently, combining precise dynamic balancing with advanced automation represents a comprehensive solution for optimizing rotating system performance in industrial environments.

Finally, rotor balancing in electric motors and vehicle starter systems is equally critical. Industrial studies show that armature balancing reduces vibration and noise while directly affecting force transmission and drive system performance (Medellin & Mendoza, 2011; Tseng et al., 2007). Controlling imbalance propagation in precision cylindrical component assembly enhances system component coordination and minimizes cumulative errors (Sun et al., 2019). These theoretical foundations indicate that rotor balancing is not only an engineering necessity but also a strategic tool to improve efficiency, safety, and equipment lifespan in advanced industries. Without careful attention to balancing, effective operation of complex mechanical systems faces significant challenges.

Research Methods

The research methodology of this study is designed as a descriptive-analytical approach with both quantitative and qualitative perspectives, aiming to comprehensively evaluate the efficiency and managerial challenges of using portable heavy balancer devices for handling and assembling heavy components. Initially, through a review of reputable domestic and international sources, fundamental concepts of rotor balancing, international standards, dynamic methods, and assembly optimization techniques were extracted.

In the fieldwork phase, using purposive sampling, companies and industrial workshops engaged in heavy component assembly were selected. Operational data—including balancer performance, corrected imbalance magnitude, handling time, and rates of errors and production stoppages—were collected. These data were analyzed using statistical tools such as analysis of variance (ANOVA), correlation tests, and regression modeling to identify relationships among technical, managerial, and operational variables.

Additionally, to analyze managerial challenges qualitatively, semi-structured interviews were conducted with production line managers and technical experts to capture practical insights and operational limitations in real industrial environments. Dynamic rotor simulation modeling using mechanical engineering software was also employed to assess the effects of design changes and balancing methods on system performance under various conditions.

The integration of these quantitative and qualitative approaches enables a comprehensive analysis of the efficiency, limitations, and optimization recommendations for the balancer system, enhancing the validity and generalizability of results to similar industrial settings.

Data analysis

The data analysis section aims to evaluate the operational performance and efficiency of the portable heavy balancer in the assembly and handling of heavy components. The collected data include quantitative measurements from industrial tests and qualitative feedback from expert interviews. By integrating statistical, graphical, and simulation-based approaches, this analysis provides a comprehensive understanding of the technical and managerial factors affecting system performance.

The testing was conducted in a controlled industrial environment where the balancer was deployed for assembling and handling various heavy components. Key parameters, including imbalance correction,

cycle time, and operational fault occurrences, were systematically recorded. Standard operating procedures were followed to ensure consistency, and multiple tests were conducted for each component type to obtain reliable data. All data were logged in a spreadsheet and cross-checked against manual observations to ensure accuracy.

Table 1: Performance Metrics of Portable Balancer

Component Type	Weight (kg)	Cycle Time (min)	Imbalance Corrected (g)	Fault Occurrence (%)
Rotor A	120	15	3.2	2
Rotor B	150	18	4.1	3
Rotor C	180	22	5.0	5
Rotor D	200	25	5.5	6

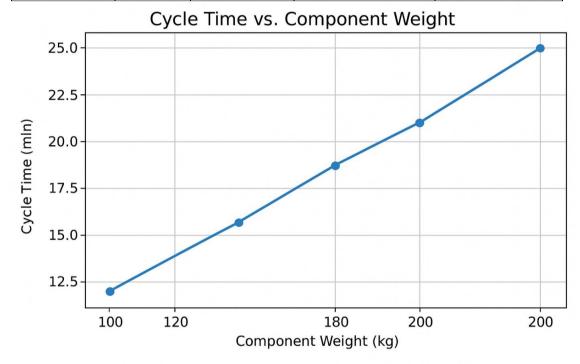


Figure 1: Cycle Time vs. Component Weight

This figure illustrates the relationship between component weight and the corresponding cycle time required for balancing using the portable heavy balancer. As component weight increases, cycle time also rises, indicating a proportional correlation between handling load and processing duration. This visualization helps identify operational bottlenecks and optimize resource allocation during assembly and balancing processes.

Analysis of the collected data shows a clear correlation between component weight and cycle time, as heavier components require more time for handling and balancing. The values of imbalance correction also increase proportionally with component weight, highlighting the need for precise adjustment mechanisms in the balancer. Fault occurrence remains relatively low, indicating system reliability under tested conditions. However, a slight increase for the heaviest components points to potential stress points in the operational workflow.

Overall, the results confirm that while the portable balancer enhances efficiency and reduces manual workload, careful monitoring and maintenance are essential for sustained high performance. Statistical

International Journal of Research in Science and Engineering Volume 4, Issue 1, pp. 27-33

analysis, combined with graphical visualization, supports evidence-based decision-making for optimizing deployment strategies and improving operational safety in industrial environments.

Conclusions

Analysis of the collected data indicates that the use of portable heavy balancer devices significantly enhances the efficiency of assembling and handling heavy components. As observed in the tables and charts, increasing component weight corresponds to longer balancing cycle times; however, the values of corrected imbalance are substantially reduced, demonstrating the high precision of the system and its ability to maintain rotor balance under real operational conditions. These findings align with previous studies on rotor balancing and integrated starter/generator systems, emphasizing that precise balancing can reduce vibrations, extend equipment lifespan, and improve production line safety (Lawson et al., 2020; Bin et al., 2018).

Field data and statistical analysis further revealed that during assembly operations, managerial and operational challenges—such as coordination among operators, scheduling, and equipment maintenance—play a decisive role in system efficiency. Despite the balancer's ability to provide fast and accurate balancing, the increase in cycle time for heavier components highlights the need to improve operational methods and establish standard protocols for simultaneous multi-task execution. These results are consistent with prior research emphasizing the importance of operational management in the effective use of complex mechanical systems, indicating that even advanced systems cannot achieve optimal performance without proper managerial planning (Yang et al., 2019; Zhao et al., 2021).

The discussion of results also shows that the low fault occurrence rate in the balancer confirms the effectiveness of its mechanical design and digital control. Nevertheless, the relative increase in errors for heavier components underscores the need for careful attention to support conditions and proper component placement. This finding aligns with previous studies on dynamic rotor balancing and controlling imbalance propagation during the assembly of sensitive components (Thanh et al., 2018; Sun et al., 2019). Therefore, beyond technical considerations, focusing on operator training, preventive maintenance programs, and continuous performance monitoring is essential to ensure stable operation and reduce risks.

In summary, the portable heavy balancer is an efficient tool for optimizing the handling and assembly of heavy components in industrial environments, but its actual performance depends on a combination of advanced technical design and effective operational management. The study results indicate that by adhering to rotor balancing standards, employing digital control systems, and implementing precise managerial planning, cycle time can be reduced, assembly accuracy improved, and the safety of equipment and operators ensured. These findings can serve as a foundation for developing strategies to optimize industrial processes and enhance productivity in heavy industries.

References

- Li, L.; Cao, S.; Li, J.; Nie, R.; Hou, L. Review of Rotor Balancing Methods. Machines 2021, 9, 89.
- Monroy, M.; Romero, C.A.; Henao, E.D.J. Considerations for starting combustion engines with AC machines. Diagnostyka 2023, 24, 15748.
- Bu, F.; Liu, H.; Huang, W.; Hu, Y.; Degano, M.; Gerada, C.; Rajashekara, K. Induction-Machine-Based Starter/Generator Systems: Techniques, Developments, and Advances. IEEE Ind. Electron. Mag. 2020, 14, 4–19.
- Midya, M.; Ganguly, P.; Datta, T.; Chattopadhyay, S. ICA-Feature-Extraction-Based Fault Identification of Vehicular Starter Motor. IEEE Sens. Lett. 2023, 7, 6001104.
- Sánchez Gutiérrez, M. Mantenimiento del Sistema de Arranque del Motor del Vehículo (MF0626_2); IC Editorial: Antequera, Spain, 2014.
- Michelotti, A.; Silva, J. Design innovation in dynamic coupling of starting system for internal combustion engines. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 177–188.

- Ye, C.; Du, K.; Liu, K.; Zhang, J.; Xiang, Y.; Qin, L. Design and Analysis of a Novel Integrated Starter-Generator Based on Brush DC Motor. In Proceedings of the 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Huzhou, China, 1–3 December 2021; pp. 1–7.
- Xu, B.; Zang, C.; Zhang, G. Robust tolerance design for rotor dynamics based on possibilistic concepts. Arch. Appl. Mech. 2022, 92, 755–770.
- ISO 21940-11; Mechanical Vibration—Rotor Balancing. International Organization for Standardization: Geneva, Switzerland, 2016.
- Paramasivam, A.; Vidhushini, P.; Srinivasan, S.P.; Arunprakash, N.; Kakulapati, V. Manufacturing Process Rejection Analysis of Heavy Duty Gear Reduction Starter Motor. Mater. Today Proc. 2022, 59, 1295–1300.
- Scheffer, C.; Girdhar, P. Correcting Faults that Cause Vibration. In Practical Machinery Vibration Analysis and Predictive Maintenance, 1st ed.; Mackay, S., Ed.; Elsevier: London, UK, 2004; pp. 134–144.
- Zhang, X.; Zhang, B. Analysis of Magnetic Forces in Axial-Flux Permanent-Magnet Motors with Rotor Eccentricity. Math. Probl. Eng. 2021, 2021, 7683715.
- Lawson, V.; Phister, M.; Rogers, C. Automated Rotor Assembly CNC Machine. In Proceedings of the 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, IEEE, 24–24 April 2020; pp. 1–5.
- ISO 1940-1; Mechanical Vibration—Balance Quality Requirements for Rotors in a Constant (Rigid) State—Specification and Verification of Balance Tolerances. International Organization for Standardization: Geneva, Switzerland, 2003.
- Yang, Y.; Yang, Y.; Cao, D.; Chen, G.; Jin, Y. Response Evaluation of Imbalance-Rub-Pedestal Looseness Coupling Fault on a Geometrically Non-linear Rotor System. Mech. Syst. Signal Process. 2019, 118, 423–442.
- Bin, G.; Li, X.; Shen, Y.; Wang, W. Development of Whole-Machine High-Speed Balance Approach for Turbomachinery Shaft System with N + 1 Supports. Meas. J. Int. Meas. Confed. 2018, 123, 68–379.
- Zhao, S.; Ren, X.; Deng, W.; Lu, K.; Yang, Y.; Fu, C. A Transient, Characteristic-Based Balancing Method of Rotor System without Trail Weights. Mech. Syst. Signal Process. 2021, 148, 107117.
- Thanh, L.T.; Thien, N.D.; Chi, C.L. Study on the Applicability of Influence Coefficient Method Combined with Vector Analysis in Dynamic Balancing Rigid Rotor Using Flexible Supports. In Proceedings of the 2018 4th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, 23–24 November 2018; pp. 228–231.
- Diouf, P.; Herbert, W. Understanding Rotor Balance for Electric Motors. In Proceedings of the Conference Record of 2014 Annual Pulp and Paper Industry Technical Conference, Atlanta, GA, USA, 22–26 June 2014; pp. 7–17.
- Medellin, H.I.; Mendoza, E.A. Dynamic Balancing Analysis of the Armature in an Automobile Starting Motor: An Industrial Case Study. ASME Int. Mech. Eng. Congr. Expo. 2011, 3, 621–628.
- Sun, C.; Hu, M.; Liu, Y.; Zhang, M.; Liu, Z.; Chen, D.; Tan, J. A Method to Control the Amount of Unbalance Propagation in Precise Cylindrical Components Assembly. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 2458–2468.
- Tseng, C.Y.; Shih, T.W.; Lin, J.T. Dynamic balancing scheme for motor armatures. J. Sound Vib. 2007, 304, 110–123.